Copied to
clipboard

G = C23.425C24order 128 = 27

142nd central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.22C23, C23.425C24, C22.1662- (1+4), C22.2172+ (1+4), C425C416C2, (C22×C4).87C23, (C2×C42).540C22, C23.Q8.11C2, C23.11D4.14C2, C23.63C2377C2, C23.83C2331C2, C23.81C2331C2, C23.65C2380C2, C24.C22.26C2, C2.C42.173C22, C2.68(C23.36C23), C2.31(C22.50C24), C2.53(C22.46C24), C2.47(C22.47C24), C2.39(C22.36C24), (C4×C4⋊C4)⋊82C2, (C2×C4).144(C4○D4), (C2×C4⋊C4).287C22, C22.302(C2×C4○D4), (C2×C22⋊C4).50C22, SmallGroup(128,1257)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.425C24
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C23.425C24
C1C23 — C23.425C24
C1C23 — C23.425C24
C1C23 — C23.425C24

Subgroups: 356 in 199 conjugacy classes, 92 normal (82 characteristic)
C1, C2 [×7], C2, C4 [×19], C22 [×7], C22 [×7], C2×C4 [×10], C2×C4 [×37], C23, C23 [×7], C42 [×8], C22⋊C4 [×12], C4⋊C4 [×16], C22×C4 [×14], C24, C2.C42 [×14], C2×C42 [×5], C2×C22⋊C4 [×7], C2×C4⋊C4 [×9], C4×C4⋊C4 [×2], C425C4, C23.63C23 [×2], C24.C22 [×5], C23.65C23, C23.Q8, C23.11D4, C23.81C23, C23.83C23, C23.425C24

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×10], C24, C2×C4○D4 [×5], 2+ (1+4), 2- (1+4), C23.36C23 [×2], C22.36C24, C22.46C24, C22.47C24 [×2], C22.50C24, C23.425C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=ca=ac, e2=f2=a, g2=ba=ab, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Smallest permutation representation
On 64 points
Generators in S64
(1 26)(2 27)(3 28)(4 25)(5 60)(6 57)(7 58)(8 59)(9 51)(10 52)(11 49)(12 50)(13 47)(14 48)(15 45)(16 46)(17 40)(18 37)(19 38)(20 39)(21 43)(22 44)(23 41)(24 42)(29 36)(30 33)(31 34)(32 35)(53 63)(54 64)(55 61)(56 62)
(1 58)(2 59)(3 60)(4 57)(5 28)(6 25)(7 26)(8 27)(9 20)(10 17)(11 18)(12 19)(13 43)(14 44)(15 41)(16 42)(21 47)(22 48)(23 45)(24 46)(29 62)(30 63)(31 64)(32 61)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
(1 28)(2 25)(3 26)(4 27)(5 58)(6 59)(7 60)(8 57)(9 49)(10 50)(11 51)(12 52)(13 45)(14 46)(15 47)(16 48)(17 38)(18 39)(19 40)(20 37)(21 41)(22 42)(23 43)(24 44)(29 34)(30 35)(31 36)(32 33)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 24 26 42)(2 43 27 21)(3 22 28 44)(4 41 25 23)(5 14 60 48)(6 45 57 15)(7 16 58 46)(8 47 59 13)(9 32 51 35)(10 36 52 29)(11 30 49 33)(12 34 50 31)(17 56 40 62)(18 63 37 53)(19 54 38 64)(20 61 39 55)
(1 50 26 12)(2 39 27 20)(3 52 28 10)(4 37 25 18)(5 17 60 40)(6 11 57 49)(7 19 58 38)(8 9 59 51)(13 30 47 33)(14 64 48 54)(15 32 45 35)(16 62 46 56)(21 53 43 63)(22 34 44 31)(23 55 41 61)(24 36 42 29)
(1 33 7 63)(2 31 8 54)(3 35 5 61)(4 29 6 56)(9 14 39 22)(10 45 40 41)(11 16 37 24)(12 47 38 43)(13 19 21 50)(15 17 23 52)(18 42 49 46)(20 44 51 48)(25 36 57 62)(26 30 58 53)(27 34 59 64)(28 32 60 55)

G:=sub<Sym(64)| (1,26)(2,27)(3,28)(4,25)(5,60)(6,57)(7,58)(8,59)(9,51)(10,52)(11,49)(12,50)(13,47)(14,48)(15,45)(16,46)(17,40)(18,37)(19,38)(20,39)(21,43)(22,44)(23,41)(24,42)(29,36)(30,33)(31,34)(32,35)(53,63)(54,64)(55,61)(56,62), (1,58)(2,59)(3,60)(4,57)(5,28)(6,25)(7,26)(8,27)(9,20)(10,17)(11,18)(12,19)(13,43)(14,44)(15,41)(16,42)(21,47)(22,48)(23,45)(24,46)(29,62)(30,63)(31,64)(32,61)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,28)(2,25)(3,26)(4,27)(5,58)(6,59)(7,60)(8,57)(9,49)(10,50)(11,51)(12,52)(13,45)(14,46)(15,47)(16,48)(17,38)(18,39)(19,40)(20,37)(21,41)(22,42)(23,43)(24,44)(29,34)(30,35)(31,36)(32,33)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,24,26,42)(2,43,27,21)(3,22,28,44)(4,41,25,23)(5,14,60,48)(6,45,57,15)(7,16,58,46)(8,47,59,13)(9,32,51,35)(10,36,52,29)(11,30,49,33)(12,34,50,31)(17,56,40,62)(18,63,37,53)(19,54,38,64)(20,61,39,55), (1,50,26,12)(2,39,27,20)(3,52,28,10)(4,37,25,18)(5,17,60,40)(6,11,57,49)(7,19,58,38)(8,9,59,51)(13,30,47,33)(14,64,48,54)(15,32,45,35)(16,62,46,56)(21,53,43,63)(22,34,44,31)(23,55,41,61)(24,36,42,29), (1,33,7,63)(2,31,8,54)(3,35,5,61)(4,29,6,56)(9,14,39,22)(10,45,40,41)(11,16,37,24)(12,47,38,43)(13,19,21,50)(15,17,23,52)(18,42,49,46)(20,44,51,48)(25,36,57,62)(26,30,58,53)(27,34,59,64)(28,32,60,55)>;

G:=Group( (1,26)(2,27)(3,28)(4,25)(5,60)(6,57)(7,58)(8,59)(9,51)(10,52)(11,49)(12,50)(13,47)(14,48)(15,45)(16,46)(17,40)(18,37)(19,38)(20,39)(21,43)(22,44)(23,41)(24,42)(29,36)(30,33)(31,34)(32,35)(53,63)(54,64)(55,61)(56,62), (1,58)(2,59)(3,60)(4,57)(5,28)(6,25)(7,26)(8,27)(9,20)(10,17)(11,18)(12,19)(13,43)(14,44)(15,41)(16,42)(21,47)(22,48)(23,45)(24,46)(29,62)(30,63)(31,64)(32,61)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,28)(2,25)(3,26)(4,27)(5,58)(6,59)(7,60)(8,57)(9,49)(10,50)(11,51)(12,52)(13,45)(14,46)(15,47)(16,48)(17,38)(18,39)(19,40)(20,37)(21,41)(22,42)(23,43)(24,44)(29,34)(30,35)(31,36)(32,33)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,24,26,42)(2,43,27,21)(3,22,28,44)(4,41,25,23)(5,14,60,48)(6,45,57,15)(7,16,58,46)(8,47,59,13)(9,32,51,35)(10,36,52,29)(11,30,49,33)(12,34,50,31)(17,56,40,62)(18,63,37,53)(19,54,38,64)(20,61,39,55), (1,50,26,12)(2,39,27,20)(3,52,28,10)(4,37,25,18)(5,17,60,40)(6,11,57,49)(7,19,58,38)(8,9,59,51)(13,30,47,33)(14,64,48,54)(15,32,45,35)(16,62,46,56)(21,53,43,63)(22,34,44,31)(23,55,41,61)(24,36,42,29), (1,33,7,63)(2,31,8,54)(3,35,5,61)(4,29,6,56)(9,14,39,22)(10,45,40,41)(11,16,37,24)(12,47,38,43)(13,19,21,50)(15,17,23,52)(18,42,49,46)(20,44,51,48)(25,36,57,62)(26,30,58,53)(27,34,59,64)(28,32,60,55) );

G=PermutationGroup([(1,26),(2,27),(3,28),(4,25),(5,60),(6,57),(7,58),(8,59),(9,51),(10,52),(11,49),(12,50),(13,47),(14,48),(15,45),(16,46),(17,40),(18,37),(19,38),(20,39),(21,43),(22,44),(23,41),(24,42),(29,36),(30,33),(31,34),(32,35),(53,63),(54,64),(55,61),(56,62)], [(1,58),(2,59),(3,60),(4,57),(5,28),(6,25),(7,26),(8,27),(9,20),(10,17),(11,18),(12,19),(13,43),(14,44),(15,41),(16,42),(21,47),(22,48),(23,45),(24,46),(29,62),(30,63),(31,64),(32,61),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)], [(1,28),(2,25),(3,26),(4,27),(5,58),(6,59),(7,60),(8,57),(9,49),(10,50),(11,51),(12,52),(13,45),(14,46),(15,47),(16,48),(17,38),(18,39),(19,40),(20,37),(21,41),(22,42),(23,43),(24,44),(29,34),(30,35),(31,36),(32,33),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,24,26,42),(2,43,27,21),(3,22,28,44),(4,41,25,23),(5,14,60,48),(6,45,57,15),(7,16,58,46),(8,47,59,13),(9,32,51,35),(10,36,52,29),(11,30,49,33),(12,34,50,31),(17,56,40,62),(18,63,37,53),(19,54,38,64),(20,61,39,55)], [(1,50,26,12),(2,39,27,20),(3,52,28,10),(4,37,25,18),(5,17,60,40),(6,11,57,49),(7,19,58,38),(8,9,59,51),(13,30,47,33),(14,64,48,54),(15,32,45,35),(16,62,46,56),(21,53,43,63),(22,34,44,31),(23,55,41,61),(24,36,42,29)], [(1,33,7,63),(2,31,8,54),(3,35,5,61),(4,29,6,56),(9,14,39,22),(10,45,40,41),(11,16,37,24),(12,47,38,43),(13,19,21,50),(15,17,23,52),(18,42,49,46),(20,44,51,48),(25,36,57,62),(26,30,58,53),(27,34,59,64),(28,32,60,55)])

Matrix representation G ⊆ GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
400000
040000
004000
000400
000040
000004
,
100000
010000
004000
000400
000010
000001
,
010000
400000
003100
000200
000002
000030
,
020000
200000
004300
000100
000010
000001
,
020000
200000
004000
001100
000001
000010
,
010000
100000
002000
000200
000020
000002

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,1,2,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[0,2,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,2,0,0,0,0,2,0,0,0,0,0,0,0,4,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;

38 conjugacy classes

class 1 2A···2G2H4A···4H4I···4Z4AA4AB4AC
order12···224···44···4444
size11···182···24···4888

38 irreducible representations

dim1111111111244
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C4○D42+ (1+4)2- (1+4)
kernelC23.425C24C4×C4⋊C4C425C4C23.63C23C24.C22C23.65C23C23.Q8C23.11D4C23.81C23C23.83C23C2×C4C22C22
# reps12125111112011

In GAP, Magma, Sage, TeX

C_2^3._{425}C_2^4
% in TeX

G:=Group("C2^3.425C2^4");
// GroupNames label

G:=SmallGroup(128,1257);
// by ID

G=gap.SmallGroup(128,1257);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,100,675,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c*a=a*c,e^2=f^2=a,g^2=b*a=a*b,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽